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Mapping of three-dimensional contact problems into one dimension
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We consider a contact problem between two three-dimensional bodies with randomly rough surfaces and
show how this problem can be reduced from three to one dimension without loss of essential contact proper-
ties. This means a huge reduction of computation time and allows the simulation of multiscale systems to
include essentially all of the scales from nanometer to macroscopic in a single model.
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I. INTRODUCTION

Many physical systems and processes have a multi-scale
fractal structure, which essentially determines their proper-
ties [1]. Many tribological systems belong to the fractal sys-
tem class. In friction processes, both the microscopic and
macroscopic scales may play an essential role [2]. For ex-
ample, a monolayer of impurity atoms on a metal surface
changes both friction and wear dramatically. On the other
hand, the contact mechanics of real surfaces (fractal in most
cases) is controlled by space scales differing by many orders
of magnitude [3]. The same problems arise in simulation of
rubber: the rolling resistance and the wear in this material
can be caused by space and time scales differing by about 10
orders of magnitude [4]. A correct simulation of such sys-
tems has to take into account all these scales. The multiscale
nature of a system often raises the question of if and how it
can be simulated numerically [5].

In the present paper, we discuss this general question for
contact mechanics of randomly rough surfaces. We show that
in contact problems it is possible to map the main properties
of a three-dimensional system onto a simplified one-
dimensional system. We achieve this in such a way that the
relavant properties of the contact problem remain invariant,
while the required computation time is drastically reduced.

II. SINGLE CONTACT

The first main idea of the proposed reduced description is
the following [6]: Consider the three-dimensional contact
problem of two smooth surfaces with relative radius of cur-
vature R; and elastic modulus E*=E/(1-1%) (v is the Pois-
son ratio). According to the Hertz’ theory, the correlation
between normal force F5 and approach d reads [7]

4 £d r/_
F;(d) = EE VRyd®. (1)

The relation between normal force F5 and radius of contact a
is

4AE"
Fi(a) = §a3- (2)
3

Now consider the one-dimensional contact problem depicted
in Fig. 1. The respective relations are
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where ¢, is the stiffness per unit length. The distance Ax
between particles is assumed to be small compared to the
size of the contact. The macroscopic relations between force
and approach, and force and radius of contact will be iden-
tical for the three-dimensional and one-dimensional problem
if

1 .

R1=5R3, c,=E". (5)

Hence, the three-dimensional contact problem for one single
spherical contact can be reduced to a one-dimensional prob-
lem for an arbitrary curvature radius. The physical nature of
this coincidence lies in the proportionality of the stiffness of
a three-dimensional contact to the contact length and not to
the contact area [7]. This property is valid both for normal
and tangential contact. It shows immediately that the one
dimensional system with constant stiffness density ¢, is an
appropriate candidate for simulating three-dimensional con-
tact problems. Note not only the force-displacement depen-
dence, but also other dependencies which are of interest for
contact mechanics (e.g., contact length-force and contact
area determined as ma®) coincide for the true three-
dimensional and the reduced one-dimensional system. Fur-
ther, mapping Eq. (5) is completely correct for any cylindri-
cal indenter. Indeed, the stiffness of the contact in this case is
2aE" both in three- and one-dimensional cases.
The local force in the one-dimensional problem is

lF

c, Az

FIG. 1. (Color online) Contact between a rigid plate and a rigid
cylinder with an elastic layer.
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fOo) o (a® = x2), (6)

which is different from the well-known result for contact
pressure in the three-dimensional problem [7]. The desired
relation is reached by defining the stress in the one-
dimensional problem according to

)

by S(X)R,’

()

where 8(x) is the local deformation and b is the effective
width. Then

2
-5 (8)

a

o(x) o«

By choosing the effective width b appropriately, the stress
according to Eq. (7) is identical to the three-dimensional
result. The definition of stress according to Eq. (7) is
not arbitrary, but has a simple physical meaning. First
note that the radius of contact is a=vJR. When taking Eq.
(7) as an estimation of the average stress, the correct
stress definition for the three-dimensional problem o
:constizconst%mconst\—k—% is obtained. However, if we let
the spring force f(x) and & depend on the coordinate x, we
get the exact Hertz stress distribution. That is the “empirical”
reason that we use the stress definition (7).

The possibility of reducing three-dimensional asperities to
an equivalent one-dimensional problem is also valid in the
case of elliptical asperities by using the geometrical average
VRWR® of the principal radii R" and R® of an asperity
instead of R. This is a very good approximation as long as
the ratio of both principal radii is not too large. For example,
for the ratio R?/RW =10, the difference between the force in
a three-dimensional problem and in the one-dimensional
problem with equivalent radius VRVR® will be 2.5% [7].
Even in the extremely unusual case R®/RW= 100, the force
in a three-dimensional problem will differ from that of the
one-dimensional problem by only 18%. Thus, in all typical
cases the result of mapping a three-dimensional problem into
one-dimension will be excellent and in the worst case still
relatively good. The fact that the force-displacement rela-
tions (1) and (3) are equivalent independent of the radius of
curvature let us hope that this result is very robust and will
not depend on the exact form of the asperity. Direct simula-
tions of contact problems with rough surfaces support this
(see next section).

III. MULTI ASPERITY CONTACT

To go over from contact of single asperities to randomly
rough surfaces, we need a rule of generating the “equivalent”
one-dimensional surfaces from two-dimensional ones. As a
motivation for the analytical form of the recalculation rule,
we use some ideas of Greenwood and Williamson (GW)
model [8]. However, we do not claim to support the correct-
ness of GW model and we do not use in our mapping the
independence of asperities.

In the Greenwood and Williamson model, the interaction
between neighboring asperities is of no importance for the

PHYSICAL REVIEW E 76, 036710 (2007)

contact problem as long as the size of micro contacts is much
smaller than the distance between them. It is rather the sta-
tistics of heights and radii of curvature which are important
for the contact problem' [8] (see also a comment in this
section). The statistics of microcontacts determines on one
hand the normal forces between bodies. On the other hand, it
determines the real area of contact and thus the tangential
friction forces. The distributions of normal and tangential
forces as well as the contact area of microcontacts are the
most important quantities for understanding and qualitative
characterization of tribological systems on a microscale. As
we have shown that a single three-dimensional asperity can
be equivalently substituted by a one-dimensional asperity—
independent of the radius of curvature—the next step is to
create a one-dimensional surface with the same contact prop-
erties. In the GW approximation this would be a surface with
the same statistical distributions of height and curvature as
the three-dimensional body’s two-dimensional surface. The
one-dimensional asperity would then have in the GW ap-
proximation the same contact properties as the initial three-
dimensional body. In the present section we study whether it
is possible to create such an “equivalent” one-dimensional
surface (line) and if possible, how it is done correctly.

For simplicity, we assume here that the topography of a
two dimensional surface (from a three-dimensional body)
can be characterized by its surface roughness power spec-
trum C,p(g) defined by

1

CZD(Q) = W

f (h(x)h(0))e ", ©)
where h(x) is the height measured from the average plane,
defined so that (4)=0 and (- --) stands for ensemble averag-
ing [3]. Since it is assumed that the statistical properties of
the surface topography are translationally invariant and iso-
tropic, the surface roughness power spectrum C,p(g) only
depends on the magnitude g of the wave vector (.

Similarly, a surface roughness power spectrum C,p(g) can
be introduced for a one-dimensional “surface” topography
according to

1 .
C1D(Q)=; f (h(x)h(0))e™"dx. (10)

To generate a one-dimensional surface equivalent to the ini-
tial two-dimensional surface, the appropriate surface rough-
ness power spectrum Cp(g) must be defined. The qualitative
arguments for the choice of proper one-dimensional spectral
density are the following: The height distribution of a fractal
surface’s asperities generally has the same order of magni-
tude as the mean square root value of the height i(x) of the

"This implies that the interrelation between microcontacts is ne-
glected. As shown in Ref. [9] this is a good approximation at small
Hurst exponents of surface roughness, while at larger Hurst expo-
nents the approximation of independent scales (Persson et al. [4]) is
more adequate. The results for contact area in both approaches
have, however, the same analytical form and differ only by a con-
stant factor.
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profile. The mean curvature of the asperities has the same
order of magnitude as the mean square root value of the
curvature x=d”h(x)/dx*>. The mean-square values of height
for two- and one-dimensional systems

(h*)yp = wa qCop(g)dg, (11)
0

<h2>1D=2J Cip(g)dq, (12)
0

will be equal, if we take

Cip(q) = mqCyp(q). (13)

It is important to note that the mean square curvatures ()
will then be equal as well.” The mapping is only possible, if
the phases in the Fourier spectrum can be considered as not
correlated. Such effects as form difference of asperities and
valleys [11] cannot be described with the above procedure.
For description of real surfaces, further studies are needed.

We now show that not only the average height and curva-
ture values will be almost equal for these systems, but also
their distributions. For this sake, we study how the statistics
of asperities of both two- and one-dimensional systems are
related to each other. We generated one-dimensional and
two-dimensional surface topographies and determined the
height and curvature distributions numerically. The surface
topography is calculated from the surface roughness power
spectrum according to

h(x) = X, Byp(q)explilq - x + (@) ]}, (14)
q

where ¢(q)=—@(—q) are randomly distributed in [0,27) and

27T

Byp(q) = T\’ Coplq) = EZD(_ Q). (15)

For the one-dimensional case the respective equations are

h(x) = 2 Bip(@)explilgx + ¢(q)]}, (16)
q

Bil@) =\ Cinl@)=Bin-). (17

Numerical generation of surfaces is based on the FFT algo-
rithm rather than directly calculating the sums in Eqgs. (14)
and (16). The distribution of asperities is calculated for each
generated surface topography. We introduce the following
ratios ¢, ¢, and ¢, which relate the asperity statistics (in-
dex p) to the profile statistics:

h? P
b= E—h’z’—;, 4’225_(’(7%’ h3= Z_KZ_; (18)

Figure 2 shows ¢, ¢,, and ¢; for one-dimensional surfaces

’In accordance with the comment at the end of Sec. 11, we define
for a two-dimensional surface x*=«x1x with k! and x? being
principal curvatures of the surface.
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FIG. 2. Ratios ¢;, ¢, and ¢3 according to Eq. (18) for a 1D
surface (top) and for a 2D surface (bottom). ¢;=2¢g, [J: ¢y, O: b,
A: (f)';

(top) and for two-dimensional surfaces (bottom), for a con-
stant power spectrum with cutting wave vectors g;=2¢y:

c for go =g =gq,,
= {0 otherwise (19)
and C,p according to Eq. (13). ¢, ¢,, and ¢; hardly depend
on the wave number ¢,. Further numerical experiments with
2=¢q,/g¢= 10 show that this characteristic is also present for
q1% 240.

The following important conclusion regarding the statis-
tics of asperities (index p) can finally be drawn from numeri-
cal studies with generated one- and two-dimensional surface
topographies 2= q,/qy,= 10): if the surface roughness power
spectrum is transformed according to Eq. (13) the statistics
of asperities will transform according to

()i = (h3)ap,
<Kp>1D = 1-8<Kp>2D’

<K,2,>1D = 2~O<K,2;>2D'

Note that according to Eq. (5) the relation for the average
curvature of asperities should preferably be («,);p=2(x,)2p-
Choosing the stiffness ¢, to achieve the correct F(d) relation,
the contact radius a will not be exactly equal in the two
models. In the case at hand the relation (x,);p=~1.8(x,)sp
leads to about 5% error in the radius of contact.

Our argument about the independence of different asperi-
ties does not play an important role in this method. In fact,
we claim that the method would also work by crossover
between different scales of asperities. The physical reason
for this is the following. Imagine a roughness with a very
large wave length superimposed with very small wave
length. If brought into contact, first the small asperities will
deform and the analogy will work exactly because all of
them are of the same scale and in the first approximation
independent. Now consider a very large normal pressure
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such that the surfaces are in a complete contact on the of
small asperities scale. After this point, the displacement-
force dependence will be correct again as now only the larger
asperity is valid and the correctness does not depend on the
curvature radius. The only question is whether the exact
crossover from one scale to the other is correct.

In order to clarify the crossover behavior and support the
conclusion regarding the identity of three-dimensional and
reduced one-dimensional problems, we have carried out test
simulations of a true three-dimensional system and compared
it with the one-dimensional counterparts generated according
to the rules described in Sec. III. Surface displacement i, of
a linear elastic half space under the action of pressure p can
be calculated according to

p(x.y) o
dxdy. 20
ff \'(x )2+ -y)? g @0

The total applied normal load is then [J4)p(x,y)dxdy. The
boundary conditions for this equation are the following:
Pressure must be positive inside the contact region, and zero
outside. Furthermore, the gap is zero inside the contact re-
gion and positive outside. Numerical evaluation of displace-
ment and pressure requires Eq. (20) to be discretized and
then solved iteratively. This method is a boundary element
approach to the normal contact problem, valid under the half
space assumption.

Using Egs. (14) and (19), 450 two-dimensional surface
topographies with 64 X 64 points have been generated. The
relation between normal force F and contact area A, has then
been calculated by the boundary element method just de-
scribed. Figure 3 shows the exemplary contact regions for
one surface and one value of normal force. The total contact
area A, is the sum of the areas of all microcontacts. The
results of all simulations are shown as error-bars in Fig. 4.
Mean values satisfy an approximately linear relation (thin
dashed line). Error bars represent the standard deviation of
the respective values.

One-dimensional simulations have been performed with
spectra according to Eq. (13). Microcontacts are now char-
acterized by their respective lengths a;. The microcontacts
are identified as connected regions in the simulation, and the
contact area is then calculated according to

i (x.y) = —

Ea (21)

LID_

The force-contact area relation for the one-dimensional
simulation is also shown in Fig. 4 (thick dotted line). The
linear approximation of the three-dimensional result and one-
dimensional result match almost exactly, even at relatively
large contact areas of about 10% of the apparent area. This is
in accordance with results by Campana and Miiser [11]. Note
that the analytical result considering independent asperities
by Bush overestimates the contact area at the given force
[9,10], while the analytical results of Persson carried out in
the approximation of independent scales underestimate the
area [4].
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FIG. 3. (Color online) Two-dimensional surface topography
(top) and microcontacts due to the applied normal force (bottom).

IV. SUMMARY

For the example of a contact problem between randomly
rough surfaces we have studied whether it is possible to re-
duce the dimension of systems from three to one while leav-
ing the essential contact properties invariant. We have shown
that it is indeed possible—as long as the contact area is much
smaller then the apparent (macroscopic) contact area. Even
at real contact areas equal to 10% of the apparent area, the
congruence between the results of the exact three-
dimensional and reduced one-dimensional systems is almost
exact. We have proved this for a variety of single asperity
forms and for random surfaces with the power spectrum
localized around some characteristic wave vector. Qualitative

N ol
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FIG. 4. (Color online) Relation between relative contact area (A,
real contact area, A apparent contact area) and normal force F,
three-dimensional results (error bars based on 450 surfaces and thin
dashed line for linear approximation of mean values) compared to
one-dimensional results (thick dotted line). One-dimensional result
and linear approximation of three-dimensional results are difficult
to distinguish because they match very closely.
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arguments of Sec. III show that the mapping should
work also for fractal surfaces, but we have not proved it so
far.

This all means a huge reduction of the computation time,
which principally allows the simulation of multiscale sys-

PHYSICAL REVIEW E 76, 036710 (2007)

tems while simultaneously including essentially all scales
from nanometer (10~ m) to macroscopic (approximately
1072 m). A model containing about 107 points is then neces-
sary for a one-dimensional system, a number still possible
for simulations run on fast computers.
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